
Derivation of Space Plane Equation 
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Summation of forces along the vertical axis ( )Z  yields, 
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For  5 ,   sin 0   and cos 1  . We shall retain the 2cos   term in the inertial lift ,I  

which is a function of flight speed  and altitude h , while v eR  is Earth's radius. 
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Using , we shall define the inertia-to-weight ratio  hW m g / ,I W  
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Thus the lift force can be expressed as follows, 
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Introducing the aerodynamic lift-to-drag ratio, , the drag force can now be expressed, /L D
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The differential change in linear momentum, 


dp , of the space plane is equal to its differential 

impulse, , received during a time interval dt , 

dJ
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Applying this equation along the flight path direction ( )x  as shown in the figure on page 4, 

while using a stationary system analysis, 
 

         sin         gas gas airm dm v dv dm v u dm v u mv D W dt  

 
where  and  are the mass and speed of the space plane, m v gasdm  is the differential gas mass 

and  its relative exhaust speed with respect to the vehicle. We shall assume the vehicle is in 
rocket mode such that  is zero for now. We will analyze the air-breathing mode later. 
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Higher order differentials like gasdv dm  can be neglected, and after simplifying terms, 
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The sum of the vehicle mass and expelled gas mass is equal to the takeoff mass  at all 

times, 
0m
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And after substituting the previously derived relation for the vehicle drag , D
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The inertia-to-weight ratio, / ,I W  is a function of speed , but since it is impossible to fully 

separate the variables, we shall assume 

v

/I W to be constant over the integration range. Thus, 
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Expressing the exhaust speed  in terms of the specific impulse, u /sp eI u g , and inverting 

the mass fraction within the natural logarithm, the final result for the space plane equation is, 
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Assumptions: 
1. Climb Angle   5 ,   L W I

2. Constant Inertia, 0/ ( )I W f v  

3. Altitude  105km,h 0D 
 
Evaluating the inertia-to-weight ratio, / ,I W  at the start of the propellant gas burn, by using 

, will underpredict the speed increase 0v v  and overpredict the propellant expenditure. 

 
If the space plane is in air-breathing mode, the impulse momentum equation, , will 
retain the additional air term. Applying a stationary system analysis along the flight path 
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With respect to the stationary system, which includes the vehicle, its exhaust, and a small 
portion of the surrounding air, the intake air is initially at rest and has the same exhaust speed 
as the gas, . But since the air intake and exhaust masses are equal, they do not directly 

affect the loss of vehicle mass during the propellant gas burn. 

 v u

 
However, the augmented air results in an additional thrust, , acting along the positive airF x  

direction, based on a moving control volume analysis, with  and u  being the intake and 
exhaust speeds relative to the moving vehicle, 

v
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Thus the stationary system analysis and moving control volume analysis yield the same result, 
not surprisingly, if we were to move  to the left side of the equation, airF dt
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The added thrust from the augmented airflow is reflected in a higher specific impulse 
compared to the pure rocket mode when the air intake is closed. Therefore, the space plane 
equation does not need to be modified for air-breathing mode, as long as the specific impulse 
is accurately determined from the thrust specific fuel consumption TS , or short , FC SFC
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In a rocket based combined cycle (RBCC) engine, the fuel flow rate is essentially the gas flow 
rate, since the embedded rocket exhaust is hydrogen rich when mixed with incoming air. Thus 
the term "fuel" shall include both liquid hydrogen and liquid oxygen in air-breathing mode. 
 
RBCC:  fuel gasm m  

 
In summary, the space plane equation shown on page 3 is equally valid in air-breathing and 
pure rocket propulsion mode under the stated assumptions (1-3). It yields an upper bound of 
propellant gas expenditure when applied to segments of the flight that use an engine mode of 
nearly constant, or reasonably averaged, specific impulse. 
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